title Evidence for enemy release and increased seed production and size for two invasive Australian acacias
authors Correia, M; Montesinos, D; French, K; Rodriguez-Echeverria, S
author full name Correia, Marta; Montesinos, Daniel; French, Kristine; Rodriguez-Echeverria, Susana
nationality internacional
source JOURNAL OF ECOLOGY
language English
document type Article
author keywords Acacia dealbata; Acacia longifolia; alien species; elaiosome; enemy release; invasive plants; legume; reproduction; seed size
keywords plus PLANT INVASIONS; CONTEMPORARY EVOLUTION; REPRODUCTIVE-BIOLOGY; LONGIFOLIA FABACEAE; BIOTIC INTERACTIONS; DEALBATA LINK; SOUTH-AFRICA; POPULATIONS; RESPONSES; SUCCESS
abstract Invasive plants are hypothesized to have higher fitness in introduced areas due to their release from pathogens and herbivores and the relocation of resources to reproduction. However, few studies have tested this hypothesis in native and introduced regions. A biogeographical approach is fundamental to understanding the mechanisms involved in plant invasions and to detect rapid evolutionary changes in the introduced area. Reproduction was assessed in native and introduced ranges of two invasive Australian woody legumes, Acacia dealbata and A.longifolia. Seed production, pre-dispersal seed predation, seed and elaiosome size and seedling size were assessed in 7-10 populations from both ranges, taking into account the effect of differences in climate. There was a significantly higher percentage of fully developed seeds per pod, a lower proportion of aborted seeds and the absence of pre-dispersal predation in the introduced range for both Acacia species. Acacia longifolia produced more seeds per pod in the invaded range, whereas A.dealbata produced more seeds per tree in the invaded range. Seeds were bigger in the invaded range for both species, and elaiosome: seed ratio was smaller for A.longifolia in the invaded range. Seedlings were also larger in the invaded range, suggesting that the increase in seed size results into greater offspring growth. There were no differences in the climatic conditions of sites occupied by A.longifolia in both regions. Minimum temperature was higher in Portuguese A.dealbata populations, but this difference did not explain the increase in seed production and seed size in the introduced range. It did have, however, a positive effect on the number of pods per tree.Synthesis. Acacia dealbata and A.longifolia escape pre-dispersal predation in the introduced range and display a higher production of fully developed seeds per fruit and bigger seeds. These differences may explain the invasion of both species because they result in an increased seedling growth and the production of abundant soil seedbanks in the introduced area.
author address [Correia, Marta; Montesinos, Daniel; Rodriguez-Echeverria, Susana] Univ Coimbra, Dept Life Sci, CFE, P-3000456 Coimbra, Portugal; [French, Kristine] Univ Wollongong, Sch Biol Sci, Northfields Ave, Wollongong, NSW 2522, Australia
reprint address Correia, M (reprint author), Univ Coimbra, Dept Life Sci, CFE, P-3000456 Coimbra, Portugal.
e-mail address correio.marta@gmail.com
funding agency and grant number project MUTUALNET - Portuguese Foundation for Science and Technology (FCT) [PTDC/BIA-BEC/103507/2008]; FCT [SFRH/BPD/72595/2010, IF-00066-2013, IF/00462/2013]; EU via QREN; COMPETE; FEDER
funding text We thank Joao A. Crisostomo for field assistance in Portugal. This research was supported by the project MUTUALNET (PTDC/BIA-BEC/103507/2008) funded by the Portuguese Foundation for Science and Technology (FCT). The FCT financed the work of DM (SFRH/BPD/72595/2010; Starting grant IF-00066-2013) and SRE (Development Grant IF/00462/2013). FCT is partially funded by the EU via QREN, COMPETE and FEDER. We thank the associate editors and two anonymous referees for their helpful comments that allowed us to improve the overall quality of the manuscript.
cited references Agrawal AA, 2001, AM NAT, V157, P555, DOI 10.1086/319932; AULD TD, 1986, AUST J ECOL, V11, P373, DOI 10.1111/j.1442-9993.1986.tb01407.x; Barton K., 2013, MUMIN MULTIMODEL INF; Bates D., 2013, LME4 LINEAR MIXED EF; Beck-Pay SL, 2012, S AFR J BOT, V83, P165, DOI 10.1016/j.sajb.2012.08.011; Birnbaum C, 2014, SOIL BIOL BIOCHEM, V76, P210, DOI 10.1016/j.soilbio.2014.05.017; Birnbaum C, 2012, DIVERS DISTRIB, V18, P962, DOI 10.1111/j.1472-4642.2012.00920.x; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Buckley YM, 2003, ECOLOGY, V84, P1434, DOI 10.1890/0012-9658(2003)084[1434:AIBAGS]2.0.CO;2; Carroll SP, 1996, BIOL CONSERV, V78, P207, DOI 10.1016/0006-3207(96)00029-8; Castroviejo S., 1999, LEGUMINOSAE PARTIM, VVII; Clark JS, 2001, AM NAT, V157, P537, DOI 10.1086/319934; Colomer-Ventura F, 2015, FUNCT ECOL, V29, P1475, DOI 10.1111/1365-2435.12463; Correia M., 2016, DRYAD DIGITAL REPOSI; Correia M, 2015, AUST J BOT, V63, P387, DOI 10.1071/BT14318; Correia M, 2014, BOT J LINN SOC, V174, P574, DOI 10.1111/boj.12155; Crawley M. J., 1987, COLONIZATION SUCCESS, P429; Crisostomo JA, 2013, APPL SOIL ECOL, V64, P118, DOI 10.1016/j.apsoil.2012.10.005; Daws MI, 2007, S AFR J BOT, V73, P138, DOI 10.1016/j.sajb.2006.09.003; Edwards K. R., 1998, J VEG SCI, V9, P267; Ens EJ, 2009, PLANT SOIL, V316, P125, DOI 10.1007/s11104-008-9765-3; Erfmeier A, 2004, FLORA, V199, P120, DOI 10.1078/0367-2530-00141; Graebner RC, 2012, PLANT ECOL, V213, P545, DOI 10.1007/s11258-012-0020-x; Groves R. H., 1998, 6 EWRS MED S MONTP F; GUNTHER RW, 1989, AM MIDL NAT, V122, P321, DOI 10.2307/2425919; Hanfling Bernd, 2002, Trends in Ecology and Evolution, V17, P545, DOI 10.1016/S0169-5347(02)02644-7; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Harris CJ, 2012, EVOL ECOL, V26, P1345, DOI 10.1007/s10682-012-9570-6; Haugo RD, 2013, FOREST ECOL MANAG, V289, P175, DOI 10.1016/j.foreco.2012.10.019; Herrera AM, 2011, BIOL INVASIONS, V13, P369, DOI 10.1007/s10530-010-9829-1; Hierro JL, 2005, J ECOL, V93, P5, DOI 10.1111/j.1365-2745.2004.00953.x; Hierro JL, 2013, OIKOS, V122, P583, DOI 10.1111/j.1600-0706.2012.00022.x; HUGHES L, 1992, ECOLOGY, V73, P1300, DOI 10.2307/1940677; Jackman S., 2015, PSCL CLASSES METHODS; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Kendrick J., 1997, B INT GROUP STUDY MI, V20, P16; Koenig WD, 2009, AM NAT, V173, P682, DOI 10.1086/597605; Konarzewski TK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049000; Kulkarni MG, 2007, J ARID ENVIRON, V69, P177, DOI 10.1016/j.jaridenv.2006.09.001; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Leishman M. R., 2000, Seeds: the ecology of regeneration in plant communities, P31, DOI 10.1079/9780851994321.0031; Lorenzo P, 2013, SOIL BIOL BIOCHEM, V57, P156, DOI 10.1016/j.soilbio.2012.08.018; Lorenzo P, 2010, AUST J BOT, V58, P546, DOI 10.1071/BT10094; Marchante H, 2010, AM J BOT, V97, P1780, DOI 10.3732/ajb.1000091; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Maslin B. R., 2001, ABRS IDENTIFICATION; Mason RAB, 2008, GLOBAL ECOL BIOGEOGR, V17, P633, DOI 10.1111/j.1466-8238.2008.00402.x; May BM, 2003, FOREST ECOL MANAG, V181, P339, DOI 10.1016/S0378-1127(03)00006-9; MILTON SJ, 1981, T ROY SOC S AFR, V44, P465; Mitchell CE, 2006, ECOL LETT, V9, P726, DOI 10.1111/j.1461-0248.2006.00908.x; Muyt A., 2001, BUSH INVADERS SE AUS; Noble I. R., 1989, BIOL INVASIONS GLOBA, P301; OOSTERMEIJER JGB, 1989, OECOLOGIA, V78, P302, DOI 10.1007/BF00379102; Orchard A. E., 2001, FLORA AUSTR B 2; Paz H, 2003, ECOLOGY, V84, P439, DOI 10.1890/0012-9658(2003)084[0439:SMASPW]2.0.CO;2; Peperkorn R, 2005, FUNCT PLANT BIOL, V32, P933, DOI 10.1071/FP04197; R Core Team, 2013, R LANG ENV STAT COMP; Rees M, 1997, J APPL ECOL, V34, P1203, DOI 10.2307/2405232; Richardson DM, 2008, PERSPECT PLANT ECOL, V10, P161, DOI 10.1016/j.ppees.2008.03.001; Richardson DM, 2011, DIVERS DISTRIB, V17, P788, DOI 10.1111/j.1472-4642.2011.00782.x; Richardson DM, 1998, CONSERV BIOL, V12, P18, DOI 10.1046/j.1523-1739.1998.96392.x; Rodriguez-Echeverria S, 2012, OECOLOGIA, V170, P253, DOI 10.1007/s00442-012-2299-7; Rodriguez-Echeverria S, 2009, BIOL INVASIONS, V11, P651, DOI 10.1007/s10530-008-9280-8; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SEDGLEY M, 1985, AUST J PLANT PHYSIOL, V12, P109; Sober V, 2013, PLANT ECOL, V214, P883, DOI 10.1007/s11258-013-0216-8; STOCK WD, 1995, OECOLOGIA, V101, P375, DOI 10.1007/BF00328825; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Thebaud C, 2001, AM NAT, V157, P231, DOI 10.1086/318635; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Venables W. N., 2002, MODERN APPL STAT S; Wandrag EM, 2013, J ECOL, V101, P1103, DOI 10.1111/1365-2745.12126; Weiss P. W., 1984, P 4 INT C MED EC U W, P159; Werner C., 2008, Plant invasions: human perception, ecological impacts and management, P261; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Whibley D. J. E., 1980, ACACIAS S AUSTR
cited reference count 77
publisher WILEY-BLACKWELL
publisher city HOBOKEN
publisher address 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
issn 0022-0477
29-character source abbreviation J ECOL
iso source abbreviation J. Ecol.
publication date SEP
year published 2016
volume 104
issue 5
beginning page 1391
ending page 1399
digital object identifier (doi) 10.1111/1365-2745.12612
page count 9
web of science category Plant Sciences; Ecology
subject category Plant Sciences; Environmental Sciences & Ecology
document delivery number DW3OU
unique article identifier WOS:000383551800018
file correiaetal2016enemyreleaseacaciasjecol.pdf
link http://doi.wiley.com/10.1111/1365-2745.12612
CFE authors
Daniel Montesinos